Pick’s Theorem

Given a simple polygon constructed on a grid of equal-distanced points (i.e., points with integer coordinates) such that all the polygon’s vertices are grid points, Pick’s theorem provides a simple formula for calculating the area ‘A’ of this polygon in terms of the number i of lattice points in the interior located in the polygon and the number b of lattice points on the boundary placed on the polygon’s perimeter:

A=i+{\frac {b}{2}}-1.


In the example shown, we have i = 7 interior points and b = 8 boundary points, so the area is A = 7 + 8/2 − 1 = 7 + 4 − 1 = 10 square units.


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s